CONVECTIVE HEAT EXCHANGE OF A VISCOPLASTIC
FLUID WITH TEMPERATURE-DEPENDENT
RHEOLOGICAL CHARACTERISTICS

DURING STRUCTURAL FLOW IN A CIRCULAR PIPE
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Heat exchange in a viscoplastic liquid moving in a circular pipe is investigated, taking into .
account the dependence of plastic viscosity and ultimate shear stress on temperature. A sys-
tem of motion, energy, and continuity equations transformed under the assumption that the Pe
and Pr numbers are much greater than 1 is solved on a computer by the method of finite dif-
ferences using iterations. Results of the numerical solutions for the exponential form of the
dependences of the rheological characteristics on temperature are analyzed in detail. A com-
parison of the numerical solutions with well-known theoretical solutions in particular cases
and also with experimental data indicates their high precision.

Many theoretical solutions of convective heat-transfer problems in Newtonian and non-Newtonian
fluids carried out by assuming that the fluid properties are constant are known [1-7].

The problem of taking into account the influence of the temperature dependence of the rheological
characteristics of a fluid on flow and heat transfer has recently drawn even greater interest, This prob-
lem has been investigated for a Newtonian [2, 8] and a non-Newtonian fluid with exponential rheological
equations [9-11]. Recently- published works [12, 13] have considered the convective heat-exchange prob-
lem in a fluid that obeys the rheological Buckley— Herschel equation, It has been proposed [12] that ul-
timate shear stress is constant and that consistency depends on temperature according to a hyperbolic
law, and that radial convective heat transfer is negligibly small, The work [13] is one which is free of the
restrictive assumptions made in [12]. However, the specific feature of the problem, namely, the presence
of a flow core, was ignored here, this presence implying, in particular, that the solution found this way
will not agree with well-known solutions of the problem in actual cases [3-7]. Concrete results of the so-
lution of this problem are lacking in [13].

In this work, the influence of the temperature dependence of rheological characteristics on flow and
heat transfer is investigated for the example of convective heat exchange in a viscoplastic fluid that obeys
the Shvedov— Bingham equation, The latter is a particular case of the Buckley—Herschel equation and is
used as the most common approximation of the rheologicalbehavior of paraffin-base and resinous petroleum
and petroleum products in a broad temperature range.

) Let us consider steady-state structural flow of a viscoplastic fluid in a eircular pipe of radius R in-
duced by the effect of a longitudinal pressure drop.

A constant temperature T,,, is maintained on the pipe wall and the fluid temperature at the pipe input
is uniformly distributed and equal to T, Ty = Ty.

Suppose the rheological characteristics of a viscoplastic fluid, the plastic viscosity u, and ultimate
shear stress 7, depend on temperature T, and that the density, heat conductivity, and heat capacity are
constant, We assume, moreover, that the fluid is incompressible:
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Wy =pof {T), To{T) =T T) (1)
In Eq. (1) uy and 7y are plastic viscosity and ultimate shear stress at temperature T,, respectively,

Our problem under the condition that mass forces can be neglected corresponds to the system of
equations

p_(vv)v:div II; _ (2)
M=2[(T) + 1/ht(T)] S — pe&;
vgrad T=a(y2T 4 1/k J[(DWh + t(T)ik);
divv=0,

where 1T and S are the stress tensor and deformation velocity tensor, ¢ is a unit tensor, h is the degree of
sliding deformation velocity, v is the velocity vector, p is pressure, p is density, ¢ and k are the thermal
diffusivity and heat transfer, respectively, of the fluid, and J is the mechanical equivalent of heat,

The first two equations in the system (2) are the motion equations for a viscoplastic Henke—I1'yushin
medium, the third equation is a heat-transfer equation is which the d1ss1pat1ve heat-release term 1s taken
into account for generality [3], and the fourth equation is a continuity equation.

Let us introduce a cylindrical coordinate system whose z axis is directed along the pipe axis. Bearing
in mind axial symmetry, we find that the tangential velocity component Vo and the derivatives of all the
variables with respect to ¢ vanish. In this case, the system (2) has the component-wise form
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Here r is the current radius and v, and v,. are the longitudinal and transverse velocity components,
respectively.

Significant difficulties are encountered in the solution of the system (3), even with the use of numerical
methods on a computer,

A natural method for overcoming them is to pass to correspondingly selected dimensionless variables
and then to discard small terms in the transformed equations.

In selecting the dimensionless variables, we will draw on physical concepts. Convective heat ex-
change in pipes develops substantially differently in the longitudinal as compared to the transverse direc-
tion, In the longitudinal directions convective heat transfer occurs, while in the transverse direction
molecular heat transfer occurs. The Pecletnumber Pe=2 (v) R/¢ (where (v) isthe meanflow rate defined by
the ratio of the volume flow rate of the fluid to the cross-sectional area of the pipe) is a measure of the
ratio of convective heat transfer to heat arising in the flow due to heat conductivity. Therefore there
exist two distinct physical scales of length, namely, the transverse R and the longitudinal, proportional to
Pe.

Let us take as the longitudinal scale of length the value L. = PeR/2 and as the characteristic pressure,
the pressure drop at distance L for isothermic flow of a viscoplastic fluid in a circular pipe,

Po=hooW *2L/2R,
where 2, is specific hydraulic resistance.

We introduce the dimensionless variables
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where Re is Reynolds parameter, I is the Saint Venant— II'yushin parameter, and « is a dissipation param-
eter,

Specific hydraulic resistance depends on the Re and I parametiers [14]:
Ay =064"Req{ T).

We transform the system (3) to new variables with a simultaneous bound on the order of each term
of the equation. Here we substantially use the fact that for most cases of structural flows of viscoplastic
fluids in pipes, the Pe number reaches extremely high valueg, up to several thousands and even hundreds
of thousands, while the Prandtl number Pr (Pr = y,/ap) varies from several hundred to thousands and
above, Therefore the terms of the transformed equations with factors Pe™® and Pr~2 (n = 1) are estimated
by the order of their magnitudes.

Discarding small terms in Egs. (3) we arrive at the equations

dP/dq=0 or P p(),
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Here we have introduced the notation V'r =Pe/2Vy; and Fy,5(6) =f1,2(T). The order of the radial velocity and
and its derivative with respect to 5 are estimated from the continuity equation in deriving Eqs. (4).

We note that terms containing av,, /dn have dropped out in the transformed motion equations. Physi-
cally, this means that the velocity profile "readjusts" as the temperature profile varies and that the initial
velocity distribution in the section ¢ = 0 does not substantially affect the development of the velocity profile
along the flow, i.e., we have not taken into account in this treatment the effects due to the development of
velocity in the initial hydrodynamic segment,

Let us pass to a discussion of the boundary conditions. The presence of a flow core adjacent to the
longitudinal axis within whose limits the flow velocity is maintained equal to the axial velocity is a distine-
tive feature of gradiant flows of viscoplastic fluids in pipes. It is necessary to recognize the existence in
the core of small longitudinal deformations, This fact is confirmed by the very closed agreement of the
theoretical solution of the development problem with the velocity of a viscoplastic fluid in the initial hydro-
dynamic segment of a circular pipe, carried out under our assumption, and experimental data [15]. Anal-
ogously [15], to determine the core radius we write the condition

LFy(8) = 8¢(I) (—dP/dE)n, (5)

Equality will hold in Eq. (5) at the core boundary. The boundary conditions for the temperature and
velocity components have the form

V,=V,=0 when 1 =1; (6)
V.=V, 0V.'0n=0 whenn=1,(); (7)
80/ =0 whenn:=0; @)

§:=1 when £-:0; {9
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Fig. 2
9==0 whenn=1{, E>0. {10)

In Eq. (7) V,, denotes core velocity, We add to Egs. (6)-(10) the condition that fluid flow rate is
constant,

1
Vin2 (8) j aV.dn = 1. (11)
No(E)

We note that the third boundary condition (7) was transferred in [13] to the pipe axis; the motion and
heat-conductivity equations were thus extended to the entire flow region without taking into account the
fact that

oV ,lon-=0
within the core,

Here we must emphasize that the first two equations of the system (4) were written for the visco-
plastic region of the flow,

The motion equation for the core reduces to

VZ:V]u

the core velocity being found from the boundary condition (7), while the heat-conductivity equation can be
extended to the entire flow region if we take into account that heat release of viscous friction is absent in
the core.

With this remark in mind, we further simplify the system (4). We integrate the first equation of the
system (4) over 7 taking into account Eq. (5) and the second boundary condition (7), and eliminate the deri-
vative BVZ/ an from the second equation of the system (4). These operations finally reduce Eqs, (4) to the
simpler form

av, Fr‘(e)[. 4<P(1)( )n, 2F(9)] 0<n< e (12)

V. =Vu@E), no<<n<1;
V;%%“L Vfg‘g :1 :n("ae)T a®(Lm), O0<n<Y
o (nVy)/on - 8 (nV2)/95 = 0,
where @ (I, n) is the distribution function for heat courses of viscous friction,

8¢ (1) dP AP i
®(1,m = {FI e)dgn[q>(1)g§—n+—2-1’z(9)], 0K

0, N <u<L
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Let us transform Eq. (11). Integrating the first equation of the system (12) and then substituting the re-
sulting expression for V, in Eq, (11) and integrating by parts, taking into account the first boundary con-
dition (7), we obtain

1

1,.;5;) F(6) {/ﬂp(l') (—%)n— 1/2F, (a)] dn = 1.

{13)

Equation (13) together with Eq, (5) determines the core radius if it is considered as a parameter,

The systems of equations (12), (5)-(10), and (13) were numerically solved on a computer using the
method of finite differences with iterations,

A similar method was previously used for numerically solving a system of equations for a boundary
layer in a compressible gas for longitudinal plate streamline [16].

Calculations were carried out for each case. In the first case, it was assumed that the rheological
characteristics of the fluid depend on the temperature according to a hyperbolic law [17], and in the second
case, according to an exponential law, We will first consider results of a numerical solution of the prob~
lem for the particular case when fluid temperature at the input and the temperature of the wall are identical
and energy dissipation results from flow nonisothermicity. Itis necessary here to vary the definition
given above of dimensionless temperature,

Taking as a new dimensionless temperature the ratio
0=T/Tw,

we may establish that a single variation, which it is necessary to carry out in the systems (12), (13) and
(5)-(10), deals with the boundary condition (10) which is replaced by

B =1; n=1; £>0.

We assume that the rheological characteristics depend on temperature by a hyperbolic law [17], so
that

Fi{0,) = Fy(0,) = o7

Figure 1 illustrates the development of the temperature and velocity fields in a liquid (I = 6; o = 0.2)
from input to the pipe through the segment corresponding to their stabilization. The longitudinal coordi-
nate { is the parameter indicated by the digits on the curve,

Distribution curves for temperature and velocity on the stabilization segment are denoted in Fig, 1
by a broken curve. A comparison of the broken curves and the exact solution of the problem obtained in
[17] reveal that they completely coincide right through the third significant digit following the decimal point
i.e,, within the limits of error of the difference scheme [calculations were carried out with steps Ay =
At =107 and the order of approximation of the difference scheme was 0 (An?) at 89 /5 £ = 0].

Let us turn to a discussion of the results of a numerical solution of the systems (12), (5)~(10), and
(13), assuming an exponential dependence of the rheological parameters of the fluid on temperature,
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F1(T) = exp [— pr(T —Tw)];

dz = f2(T) = exp [~ B2 (T — T'w)];
50 Bi = Bi (To — Tw); Fi(0)=exp(—p:0), (1 =1,2).
il [
i“ ], The temperature distribution with respect to radius and
BRI . length of the pipe is illustrated in Fig, 2 (I=11, a=0,and g, = & =
'; 1), The longitudinal coordinate ¢ is the parameter of the curves,
// iy The precision of these results can be estimated by comparing the
,0/:!::4:: ::‘:_.- - broken curves depicted in Fig, 2, which correspond to £ = 3, =0,
o 02 02 to analogous curves given in [7] for these values of £ and n; = 0.5

(I =11 and core radius n, = 0.495). A comparison reveals that
Fig. 5 they totally coincide, Itshouldbe emphasizedhere that ¢ is"stretched
out" to twice that of the coordinate given in [7] by the same letter.

The dimensionless heat-transfer coefficient or Nusselt number, has the form
Nu = 2<0> —l(de/dn) n=11

where (0) is the mean flow temperature,

1
<0 =2 [ V. ()6 (n) d.
[1]

The variation of the Nusselt number along the pipe length as a function of the parameter I, g, f,
and « is illustrated in Fig. 3.

(I —1 =38, p,=P,=0, a=0;
2 —1=0, §,=0, a=0;

3 —1=11, §,=0,=0, a=0;

4 —1 =11, =1, $,=0, a=0;
5—1=11, p;=B,=1, a=0;

6 — 1 =11, B,=1, p,=0, @=0.025).

The nature of the variation of the curves in Fig,. 3indicatesa decrease in fluid heat transfer if its rheolog-
ical characteristics are temperature-dependent. The broken curves in Fig. 3 were calculated for con-
stant rheological characteristics of the fluid, Curve 2, which corresponds to a viscous fluid (at I = 0)
precisely coincides with the graph given in [2], and curve 3 precisely coincides with the graph depicting
the variation of the Nusselt number for a viscoplastic fluid at n, =0.5 and g = 5, =0 [4, 7]. It is evident
from Fig. 3 that energy dissipation, particularly at a distance from the input to the pipe, leads to a sub-
stantial increase in the Nusselt number. This fact has been studied in detail [4-7]. From the results of
these investigations, the Nusselt parameter first monotonically decreases, then sharply increases at a
significant distance from the input, and, finally attains stabilization. Figure 3 depicts two of these char-
acteristic features. Stabilization apparently holds when £ > 0.5, but no calculation was carried out for this
region.

The velocity distribution across the pipe as a function of the parameters I and p; is illustrated in
Fig. 4 (at £ = 0.034 and o= 0):

I— 1=0, B,=1.36; 2 —1 =0, B,=0;
3— 1=0, p;=1; 4 — 1 =11, B,=1, B,—0;
5 — 1=14, B,=p,=0).

Curve 1 was drawn through points denoted by the light circles. They correspond to values of the velocity
vy, found by a caleculation at I =0 and 5, = 1.36. Experimental results [10] obtained in investigating the
flow of a Newtonian fluid (glycerin) under these conditions (g = 1.36) are indicated by dark circles, We
note that the coordinate ¢ is "stretched out” by four times that of the longitudinal x coordinate selected
in [10]. The experimental and theoretical results can be seen to coincide well.
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Variations in the velocity distributions along the pipe qualitatively explain these features of heat
transfer and the increase in local temperatures for variable rheological characteristics of a fluid, since
in this case an increase in the velocity of the central flow region facilitates more intensive heat transfer
from the input to the pipe. This leads to a general increase in temperature and a decrease in heat transfer,
Such a "gain" in heat losses is attained due to a sharp increase in the pressure drop.

A graphic representation of the most characteristic features in the variation of the pressure gradient
along the pipe length is given by Fig. 5, which simultaneously illustrates a comparison of the experimental
data [10] for a Newtonian fluid, indicated by circles, and numerical solutions:

(1—-1=0, §,=1.95 a=0;
2— 1=0, B;=1, a=0;
3 — L=11, =1, §,=0, a=0;
4 — I=11, B,=1, B,=0, a=0.025).

Since, according to a previous bound {10}, the maximal error in determining the pressure gradient amounts
to 12 %, we may conclude that the experimental results and the numerical solution coincide to a high degree,
At the same time, the systematic understatement of the calculated pressure gradient as compared to the
experimental data for a region near the input pipe is evidently explained by the fact that effects related to
the development of velocity in the initial hydrodynamic segment, which were estimated to be small, are of
great value for this region.

It is well known that the length of the initial hydrodynamic segment is significantly less for a visco-
plastic fluid than for a Newtonian fluid {3, 15]. We should therefore expect that the error noted above in
the numerieal solutions occurs in a highly narrow region directly at the input of the pipe and does not
noticeably affect the precision of the calculation in the overwhelming majority of the cases.

The author wishes to express his appreciation to V, M. Entov and V, I, Maron for useful discussion,
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