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Heat  exchange in a v i scop las t i c  liquid moving in a c i r c u l a r  pipe is invest igated,  taking into 
account  the dependence of p las t i c  v i scos i ty  and u l t imate  shea r  s t r e s s  on t e m p e r a t u r e .  A s y s -  
t e m  of motion,  energy,  and continuity equations t r a n s f o r m e d  under  the assumpt ion  that  the Pe  
and P r  number s  a re  much g r e a t e r  than 1 is solved on a compute r  by the method of finite dif-  
f e r ences  using i t e ra t ions .  Resul t s  of the numer i ca l  solutions for  the exponential  f o r m  of the 
dependences of the rheologica l  c h a r a c t e r i s t i c s  on t e m p e r a t u r e  a r e  analyzed in detai l .  A c o m -  
pa r i son  of the numer ica l  solutions with well-known theore t ica l  solutions in pa r t i cu l a r  cases  
and also with exper imen ta l  data indicates  the i r  high p rec i s ion .  

Many theore t ica l  solutions of convect ive h e a t - t r a n s f e r  p rob l ems  in Newtonian and non-Newtonian 
fluids c a r r i e d  out by assuming  that  the fluid p r o p e r t i e s  a re  constant  a r e  known [1-7]. 

The p r o b l e m  of taking into account the influence of the t e m p e r a t u r e  dependence of the rheologica l  
c h a r a c t e r i s t i c s  of a fluid on flow and heat  t r a n s f e r  has r ecen t ly  drawn even g r e a t e r  i n t e re s t .  This p r o b -  
l em has been inves t igated for  a Newtonian [2, 8] and a non-Newtonian fluid with exponential  rheological  
equations [9-11]. Recen t ly -pub l i shed  works  [12, 13] have cons idered  the convect ive hea t -exchange  p r o b -  
l em in a fluid that  obeys  the rheologica l  B u c k l e y - H e r s c h e l  equation.  It  has been p roposed  [12] that ul-  
t ima te  shea r  s t r e s s  is constant  and that cons is tency  depends on t e m p e r a t u r e  according  to a hyperbol ic  
law, andtha t  radia l  convect ive heat  t r a n s f e r  is negligibly smal l .  The work  [13] is one which is f ree  of the 
r e s t r i c t i v e  assumpt ions  made in [12]. However,  the specif ic  f ea tu re  of the p rob l em,  namely ,  the p r e s e n c e  
of a flow core ,  was ignored here ,  this p r e s e n c e  implying,  in pa r t i cu l a r ,  that the solution found this way 
will not agree  with wel l -known solutions of the p rob l em in actual c a se s  [3-7]. Concre te  r e su l t s  of the so-  
lution of this p r ob l em  a re  lacking in [13]. 

In this work,  the influence of the t e m p e r a t u r e  dependence of theo log ica l  c h a r a c t e r i s t i c s  on flow and 
heat  t r a n s f e r  is inves t iga ted  for  the example  of convect ive heat  exchange in a v i scop la s t i c  fluid that obeys 
the Shvedov-  Bingham equation. The la t t e r  is a pa r t i cu l a r  case  of the B u c k l e y -  Her sche l  equation and is 
used  as the mos t  common approximat ion  of the rheo log ica lbehav io r  of p a r a f f i n - b a s e  and res inous  pe t ro l eum 
and pe t ro l eum products  in a b road  t e m p e r a t u r e  range .  

Let  us cons ider  s t eady - s t a t e  s t ruc tu ra l  flow of a v i scop las t i c  fluid in a c i r cu l a r  pipe of radius  R in- 
duced by the effect  of a longitudinal p r e s s u r e  drop.  

A constant  t e m p e r a t u r e  T W is mainta ined on the pipe wall and the fluid t e m p e r a t u r e  at the pipe input 
is uni formly  d is t r ibuted  and equal to To, T W ~ T 0. 

Suppose the theologica l  c h a r a c t e r i s t i c s  of a v i scop las t i c  fluid, the p las t ic  v i scos i ty  p, and u l t imate  
shea r  s t r e s s  T o depend on t e m p e r a t u r e  T, and that  the density , heat  conductivity,  and heat  capaci ty  a re  
constant .  We assume ,  m o r e o v e r  ' that the fluid is i ncompres s ib l e :  
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~t(T) = ~to/x(T), %(T) = Xoo/~(T) (1) 

In Eq. (1) ~t 0 and TOO are  plast ic  v iscos i ty  and ultimate shear  s t r e ss  at t empera ture  To, respect ively .  

Our problem under the condition that mass  forces  can be neglected cor responds  to the sys tem of 
equations 

9(vv)v=div II; (2) 

II=2[~(T) + Uh%(T)] S - -  p~;  

v grad T=a{v2T + i /k  J[~t(T)h + ~0(T)lh}; 

divv=0, 

where II and S are  the s t r e s s  tensor  and deformation velocity tensor,  ~ is a unit tensor ,  h is the degree of 
sliding deformat ionveloci ty ,  v is the veloci ty vector ,  p is p re s su re ,  p is density, a and k are  the thermal  
diffusivity and heat t r ans fe r ,  respect ively ,  of the fluid, and J is the mechanical  equivalent of heat. 

The f i r s t  two equations in the sys tem (2) are  the motion equations for a v iscoplas t ic  Henke- I I ' yush in  
medium, the third equation is a hea t - t r ans fe r  equation is which the dissipative hea t - re lease  t e rm is taken 
into account for  general i ty  [3], and the fourth equation is a continuity equation. 

Let us introduce a cyl indr ical  coordinate eys tem whose z axis is directed along the pipe axis. Bearing 
in mind axial symmet ry ,  we find that the tangential velocity component v(p and the derivatives of all the 
var iables  with r e spec t  to (p vanish.  In this case,  the sys tem (2) has the component-wise form 

[ l/hT0)(  T \0r(&'r---'r-" ;Vr) [ av r avr'~ ap ,  a , llh~o)a,'~ 2 (~ -r (~t + + + t/h~o) (3) 

P v"-bTr ' " az ] : --  ~-z + ar  (~t + l/hTo) ~ r  + az/] + 7z "(~ + t/h~o) ~-z] "- l/r (~t + l/hro) \JT-r -}- -~z]; 

al" . aT [~  a [ aT~ a~T 4_ l / k j ( i t h +  %)h ] 

o (r, ' ,) ~ (,-~,~) = O; 
-i- az 

h ~  (~Vr + ~ )  + 2  2 ~ \-~z]] " 

Here r is the cur ren t  radius and v z and v r are  the longitudinal and t r ansve r se  velocity components,  
respect ively .  

Significant difficulties are encountered in the solution of the sys tem (3), even with the use of numerical  
methods on a computer .  

A natural  method for  overcoming them is to pass  to correspondingly selected dimensionless var iables  
and then to d iscard  small  t e rms  in the t r ans fo rmed  equations. 

In selecting the dimensionless  var iables ,  we will draw on physical  concepts.  Convective heat ex- 
change in pipes develops substantially differently in the longitudinal as compared to the t r ansve r se  d i rec-  
tion. In the longitudinal directions convective heat t r ans fe r  occurs ,  while in the t r ansve r se  direction 
molecular  heat t r ans fe r  occurs .  The Pec le tnumber  Pe = 2 (v> R/a  (where <v> is the mean flow rate  defined by 
the rat io of the volume flow ra te  of the fluid to the c ross - sec t iona l  a rea  of the pipe) is a measure  of the 
rat io of convective heat t r ans fe r  to heat ar is ing in the flow due to heat conductivity. Therefore  there 
exist  two distinct physical  scales  of length, namely, the t r ansve r se  R and the longitudinal, proport ional  to 
Pc .  

Let us take as the longitudinal scale of length the value L = PER/2 and as the charac te r i s t i c  p ressure ,  
the p r e s s u r e  drop at distance L for i so thermic  flow of a viseoplast ic  fluid in a c i rcu la r  pipe, 

po =%oO<v>2/2L/2Tr 

where 7~0 is specific hydraulic res i s tance .  

We introduce the dimensionless var iables  
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/B  
11= r/B; ~.=z/~-Pe;  P = P/Po; O = (T --  Tw)/(To - -  Tw); 

V~=v/< v>; V~--v,.l<v > ; Re = 2 R  < v > P/P-o; 

=2XooRl ( v >~to; a =  < v )2~o/2~d(T o -- Tw), 

where Re is Reynolds pa ramete r ,  i is the Saint Venan t - I I ' yu sh in  p a r a m e t e r ,  and a is a d i s s i p a t i o n  pa ram-  
e ter .  

Specific hydraulic res is tance  depends on the Re and I p a r a m e t e r s  [14]: 

2~0 =64'Re~(I).  

We t r ans fo rm the sys tem (3) to new var iables  with a simultaneous bound on the order  of each t e rm 
of the equation. Here we substantially use the fact  that for mos t  cases  of s t ruc tura l  flows of v iscoplas t ic  
fluids in pipes, the Pe number reaches  ex t remely  high values,  up to severa l  thousands and even hundreds 
of thousands, while the Prandt l  number P r  (Pr = po/ap)  var ies  f rom severa l  hundred to thousands and 
above. Therefore  the t e rms  of the t r ans fo rmed  equations with factors  Pe -n and P r  -n  (n >~ 1) are  es t imated 
by the o rder  of their  magnitudes.  

Discarding small  t e rms  in Eqs.  (3) we a r r ive  at the equations 

dP/d~l=O or p==p(~), 

dP ~ ~a{ [ a v  z ]} d~ - - s ~ ( I ) , l ~  *1 F I ( 0 ) ~ - - I F ~ ( 0 )  ; (4) 

v, ~__ oo ., o f  oo~ [ ov ~ : ]~n% 
~oq ' V ~ = ~ [ n ~ / + 2 a  r,(o)-ugq --yF, .(O ) W(; 

oq ~ a~ -- O. 

Here we have introduced the notation V' = Pe /2Vr ;  and FI,2(0 ) = fl ,2(T).  The order  of the radial  velocity and 
and its derivative with r e spec t  to 77 a r e r s t i m a t e d  f rom the continuity equation in deriving Eqs.  (4). 

We note that t e rms  containing aV z/~1 have dropped out in the t r ans fo rmed  motion equations. Phys i -  
cally, this means that the velocity profi le  " readjus ts"  as the tempera ture  profi le var ies  and that the initial 
velocity distribution in the sect ion ~ = 0 does not substantially affect the development of the veloci ty profile 
along the flow, i.e., we have not taken into account in this t rea tment  the effects due to the development of 
veloci ty in the initial hydrodynamic segment .  

Let us pass  to a discussion of the boundary conditions. The p resence  of a flow core  adjacent to the 
longitudinal axis within whose l imits  the flow veloci ty is maintained equal to the axial veloci ty is a dis t inc-  
tive feature of gradiant  flows of v iscoplas t ic  fluids in pipes,  it is  neces sa ry  to recognize  the existence in 
the core  of smal l  longitudinal deformat ions .  This fact is confirmed by the ve ry  closed agreement  of the 
theoret ical  solution of the development problem with the veloci ty of a viscoplast ic  fluid in the initial hydro-  
dynamic segment of a c i r cu la r  pipe, ca r r i ed  out under our assumption, and experimental  data [15]. Anal-  
ogously [15], to determine the core  radius we write the condition 

I Fo(O) >~ 8(p( I ) (--dP/d~)~lo. (5) 

Equality will hold in Eq. (5) at the core  boundary.  The boundary conditions for  the t empera tu re  and 
veloci ty components have the form 

V z = V ) = O  when ~ = t ;  (6) 

V: = VI:, OV.'O~I-- 0 when~l=~10(~_); (7) 

ao.'aq=o when~:=0; (8) 

0 = 1 when ~=-:0; (9) 
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In Eq. (7) Vlz denotes core  veloci ty .  We add to Eqs.  (6)-(10) the condition that fluid flow ra te  is 
constant,  

i 
Vidl ~ (~) + 2 f ~lV~d'l = t. (11) 

nob) 

We note that the th i rd  boundary condition (7) was t r a n s f e r r e d  in [13] to the pipe axis; the motion and 
heat-conduct ivi ty  equations were  thus extended to the ent i re  flow region without taking into account the 
fact that 

OVa~On =0 

within the core .  

Here we must  emphas ize  that the f i r s t  two equations of the sys tem (4) were wri t ten for the v i sco-  
plast ic  region of the flow. 

The motion equation for  the core  reduces  to 

G = Vm 

the core  veloci ty  being found f rom the boundary condition (7), while the heat-conduct ivi ty  equation can be 
extended to the en t i re  flow region if we take into account that heat r e l ease  of viscous fr ict ion is absent in 
the core .  

With this r e m a r k  in mind, we fur ther  simplify the sys tem (4). We integrate  the f i r s t  equation of the 
sys tem (4) over  ~? taking into account Eq. (5) and the second boundary condition (7), and el iminate the de r i -  
vative 0Vz/O~ ? f rom the second equation of the sys tem (4). These  operat ions finally reduce Eqs.  (4) to the 
s imple r  fo rm 

o---~=FV'(O) 4~(~) - ~  n+{G(o), o<n<no, (:2) 

G = V,~(~), n, -.< n < i; 

�9 n o +  ~0 I ~ { ~o~ , 
v,.~i v , , ~ = ~ . . ~ k n ~ l T ~ r  o~<n<l; 

o (nv',)/an + o (nv,)/o~ = o, 

where @ (I, V) is the distr ibution function for  heat courses  of viscous fr ict ion,  

fs~p (:)~__p [4~ ( i )  ~-~ ] @( i ,n )= jF~(O)d  ~ '1 n + I F ~ ( O ) ,  OG~l~.~rlo 

1 �9 O, ~1o ~ 1 ~  t. 
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Let us t r ans fo rm Eq. (11). Integrating the f i r s t  equation of the sys tem (12) and then substituting the r e -  
sulting express ion  for V z in Eq. (11) and integrating by par t s ,  taking into account the f i rs t  boundary con-  
dition (7), we obtain 

i 
(13) 

Equation (13) together with Eq. (5) determines  the core  radius if it is considered as a pa r ame te r .  

The sys tems  of equations (12), (5)-(10), and (13) were numer ica l ly  solved on a computer  using the 
method of finite differences with i terat ions .  

A s imi la r  method was previously  used for numerica l ly  solving a sys tem of equations for a boundary 
layer  in a compress ib le  gas for longitudinal plate s t reamline  [16]. 

Calculations were  ca r r i ed  out for  each case .  In the f i r s t  case ,  it was assumed that the rheological  
cha rac te r i s t i c s  of the fluid depend on the t empera tu re  according to a hyperbolic law [17], and in the second 
case,  according to an exponential law. We will f i rs t  consider  resul ts  of a numer ica l  solution of the prob-  
lem for  the par t i cu la r  case  when fluid t empera tu re  at the input and the t empera tu re  of the wall a re  identical 
and energy dissipation resu l t s  f rom flow nonisothermici ty .  It is neces sa ry  here  to va ry  the definition 
given above of dimensionless  t empera ture .  

TaMng as a new dimensionless  t empera tu re  the rat io 

Or= T/Tw, 

we may establ ish that a single variat ion,  which it is necessa ry  to c a r r y  out in the sys tems  (12), (1:3) and 
(5)-(10), deals with the boundary condition (10) which is replaced by 

0~=1; ,q=l; ~>0. 

We assume that the theological  cha rac te r i s t i c s  depend on tempera tu re  by a hyperbolic !aw [17], so 
that 

F~ (o~) -- F~ (0,) = OF ~. 

Figure 1 i l lus t ra tes  the development of the t empera tu re  and veloci ty fields in a liquid (I = 6; ~ = 0.2) 
f rom input to the pipe through the segment  corresponding to  their stabilization. The longitudinal coordi -  
nate ~ is the pa r ame te r  indicated by the digits on the curve .  

Distribution curves  for t empera ture  and velocity on the stabilization segment  are  denoted in Fig. 1 
by a broken curve.  A compar ison  of the broken curves  and the exact  solution of the problem obtained in 
[17] reveal  that they completely coincide right through the third  significant digit following the decimalpoint  
i.e.; within the l imits of e r r o r  of the difference scheme [calculations were ca r r i ed  out with steps A v = 
A~ = 10 -2 and the o rde r  of approximation of the difference scheme was 0 (A~? 2) at 90/0 4 = 0]. 

Let us turn to a discussion of the resul ts  of a numerica l  solution of the sys tems  (12), (5)-{10), and 
(13), assuming an exponential dependence of the rheological  p a r a m e t e r s  of the fluid on tempera ture ,  
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The d i m e n s i o n l e s s  h e a t - t r a n s f e r  

~i = ~ ( T o  - -  T w ) ;  Yl (0)---- exp (--  f, iO), (i = 1, 2). 

The t e m p e r a t u r e  d i s t r ibu t ion  with r e s p e c t  to rad ius  and 
length of the pipe is i l l u s t r a t ed  in F ig .  2 (I = 11, a = 0, and//1 = ~ = 
1). The longitudinal  coord ina te  } i s  the p a r a m e t e r  of the c u r v e s .  
The p r e c i s i o n  of these  r e s u l t s  can be e s t i m a t e d  by c o m p a r i n g  the 
b roken  c u r v e s  depic ted  in Fig .  2, which c o r r e s p o n d  to fl =/32 = 0, 
to  analogous  c u r v e s  given in [7] fo r  these  values  of } and ~0 = 0.5 
(I = 11 and c o r e  r ad ius  ~0 = 0.495)~ A c o m p a r i s o n  r e v e a l s  tha t  
they to ta l ly  co inc ide .  It shou ldbe  e m p h a s i z e d  he re  that  ~ i s "  s t r e t c h e d  
out" to twice that  of  the coord ina te  given in [7] by  the s a m e  l e t t e r .  

coe f f i c i en t  o r  Nusse l t  number ,  has  the f o r m  

Nu=2<0)-X(d0/dT1)n=t, 

(0) is the m e a n  flow t e m p e r a t u r e ,  

t 
<0> = 2 y~lVz 01) 0 (q) dq. 

0 

The  va r i a t i on  of  the Nusse l t  n u m b e r  along the pipe length  as  a funct ion of the p a r a m e t e r  I, /~l, P2, 
and a is i l l u s t r a t ed  in F ig .  3.  

(1 - - I  = 3 8 ,  ~ x = ~ 2 = 0 ,  cr 
2 - - I  =0,  ~1=0, a = 0 ;  

3 - -  I = I t ,  ~z=~2=0, a = 0 ;  

4 --  I = i ! ,  [3~----1, ~.2=0, a=O; 

5 - -  I = 1 t ,  ~1----i~2=t, ~=0 ;  

6 -  I = i i ,  [~=1, [32=0, ~=0.025). 

The na tu re  of the v a r i a t i o n  of the c u r v e s  in F ig .  3 ind ica tes  a d e c r e a s e  in fluid heat  t r a n s f e r  if its t h e o l o g -  
ical  c h a r a c t e r i s t i c s  a r e  t e m p e r a t u r e - d e p e n d e n t .  The  b roken  c u r v e s  in Fig .  3 w e r e  ca lcu la ted  fo r  con-  
s tan t  t heo log i ca l  c h a r a c t e r i s t i c s  of  the fluid. Curve  2, which c o r r e s p o n d s  to a v i s cous  fluid (at I = 0) 
p r e c i s e l y  co inc ides  with the g raph  given in [2], and cu rve  3 p r e c i s e l y  coinc ides  with the g raph  depict ing 
the v a r i a t i o n  of the Nusse l t  n u m b e r  f o r  a v i s cop l a s t i c  fluid at  770 = 0.5 and fil = /32 = 0 [4, 7]. I t  is  evident  
f r o m  Fig .  3 that  e n e r g y  d iss ipa t ion ,  p a r t i c u l a r l y  at  a d is tance  f r o m  the input to the pipe,  leads  to a sub-  
s tan t ia l  i n c r e a s e  in the Nusse l t  num be r .  This  fac t  has  been  s tudied in detai l  [4-7].  F r o m  the r e su l t s  of 
these  inves t iga t ions ,  the N u s s e l t  p a r a m e t e r  f i r s t  mono ton ica l ly  d e c r e a s e s ,  then sha rp ly  i n c r e a s e s  at  a 
s ign i f i can t  d i s tance  f r o m  the input, and, f inal ly  a t ta ins  s tabi l iza t ion .  F igu re  3 depicts  two of these  c h a r -  
a c t e r i s t i c  f e a t u r e s .  S tabi l iza t ion  appa ren t ly  holds  when ~ > 0.5~ but no ca lcu la t ion  was  c a r r i e d  out f o r  this 
r eg ion .  

The  v e l o c i t y  d i s t r ibu t ion  a c r o s s  the pipe as a funct ion of the p a r a m e t e r s  I and fil is  i l l u s t r a t ed  in 
F ig .  4 (at ~ = 0.034 and a = 0): 

I -  I =0, ~1----t.36; 2 - - I  =0,  ~ = 0 ;  

3 - -  I =0,  ~1=t; l - -  I = l  J, ~ = t ,  82=0; 
5 - -  I = i t ,  13~=IL_=O). 

Curve  1 was  drawn th rough  points  denoted by the light c i r c l e s .  They  c o r r e s p o n d  to va lues  of the ve loc i ty  
V z found by a ca lcu la t ion  at I = 0 and fii = 1.36. E x p e r i m e n t a l  r e s u l t s  [10] obta ined in inves t iga t ing  the 
flow of  a Newtonian fluid (g lycer in)  under  these  condi t ions  (fl~ = 1.36) a r e  indica ted  by da rk  c i r c l e s .  We 
note tha t  the coord ina te  ~ is " s t r e t c h e d  out" by four  t imes  that  of the longitudinal  x coord ina te  s e l ec t ed  
in [10]. The expe r i m e n t a l  and t heo re t i ca l  r e su l t s  can be seen  to coincide well .  
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Varia t ions  in the veloci ty  d is t r ibut ions  along the pipe qual i ta t ively  explain these  fea tu res  of hea t  
t r a n s f e r  and the i nc r ea s e  in local t e m p e r a t u r e s  for  va r i ab l e  rheologica l  c h a r a c t e r i s t i c s  of a fluid, s ince 
in this case  an i n c r e a s e  in the ve loc i ty  of the cen t ra l  flow region fac i l i ta tes  m o r e  intensive heat  t r a n s f e r  
f r o m  the input to the pipe.  This  leads to a genera l  i nc r ea se  in t e m p e r a t u r e  and a dec r ea se  in heat  t r a n s f e r .  
Such a "gain" in heat  los ses  is at tained due to a sha rp  i n c r e a s e  in the p r e s s u r e  drop.  

A graphic  r ep re sen ta t i on  of the m o s t  c h a r a c t e r i s t i c  fea tu res  in the var ia t ion  of the p r e s s u r e  gradient  
along the pipe length is given by Fig.  5, which s imul taneous ly  i l lu s t r a t e s  a c o m p a r i s o n  of the exper imenta l  
data [10] for  a Newtoniaa fluid, indicated by c i r c l e s ,  and numer i ca l  solut ions:  

( 1 -  I = 0, ~ ,=1,95,  a = 0 ;  

2 - -  I =0, ~ = t ,  a=0 ;  

3 - -  I=1~, ~ = t ,  92=0, a=0 ;  
4 --  I =~'1, ~1=i, 13~=0, a=0.025). 

Since, accord ing  to a p rev ious  bound [10], the max imal  e r r o r  in de te rmin ing  the p r e s s u r e  g rad ien t  amounts  
to 12 %, we m a y  conclude that the expe r imen ta l  r e su l t s  and the numer i ca l  solution coincide to a high degree .  
At the s a m e  t ime,  the sy s t ema t i c  unde r s t a t emen t  of the ca lcula ted  p r e s s u r e  gradient  as c o m p a r e d  to the 
exper imen ta l  data for  a region nea r  the input pipe is evidently explained by the fact  that  effects  r e l a t ed  to 
the development  of ve loc i ty  in the init ial  hydrodynamic  segment ,  which were  e s t ima ted  to be smal l ,  a re  of 
g r ea t  value for  this region.  

It is well  known that  the length of the initial hydrodynamic  segment  is s ignif icantly l e s s  for  a v i sco -  
p las t i c  fluid than for  a Newtonian fluid [3, 15]. We should t he re fo re  expect  that  the e r r o r  noted above in 
the numer i ca l  solutions occurs  in a highly na r row region d i rec t ly  at  the input of the pipe and does not 
not iceably affect  the p rec i s ion  of the calculat ion in the overwhelming  ma jo r i t y  of the c a s e s .  

The author wishes to e x p r e s s  his apprec ia t ion  to V o M. Entov and V. I.  Maron for  useful d iscuss ion .  
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